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Summary 

This document describes the support information and methodologies that were used to 
produce the results shown in the Clim2Power webservice. It helps the user better 
understand where the results come from and how they were produced.  
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1 Overall Methodological Approach  
 

The Clim2power project created a pipeline of different models and analytical approaches that 
translate the climate data (seasonal forecasts and long-term climate projections) into indicators 
useful for end-users (Erreur ! Source du renvoi introuvable.). 

 

Figure 1 – Overview of the considered approach in Clim2power project 

The project makes use of seasonal climate forecasts from GCFS - German Climate Forecast System, 
which are monthly updated and downscaled to 6km (complemented with a set of reanalysis for 
1995-2015). The long-term climate projections are from EUROCORDEX for 11 climate models and 
two representative concentration pathways scenarios (RCP4.5 & 8.5) with a spatial resolution of 
12.5km.  

These are translated to timeseries of maximum capacity factors for RES energy from hydro, wind 
power, and solar PV using different approaches, namely machine learning and statistical methods. 
This information is aggregated per NUT2 regions of Europe (circa 263) and for 96 maritime regions.  

The impact of temperature on the demand for heating and cooling (and electricity) is estimated 
using a machine learning approach. 

Finally, energy system and power models are used to produce the Clim2power output indicators. 
For the long-term analysis, a new bottom-up optimisation eTIMES-EU energy system model (Loulou 
and Labriet, 2008) was used. Because TIMES models are mainly adequate to support decision and 
investments (e.g. more adequate for long-term climate projections), the seasonal analysis was made 
with the dispatch model DISPA-SET (Quoilin et al., 2016) to assess the optimal operation of 
electricity generation at seasonal level. Typical results from both these models are: installed 
capacity, generation portfolio, electricity prices and CO2 emissions, among other. 
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All components are integrated in a web-service application inspired by (Ranchin, n.d.). Development 
is founded on an iterative stakeholder-guided approach, closely integrating target markets in the 
development process, in line with (Giannini et al., 2016; Lourenco et al., 2015; Reinecke, 2015). 
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2 Climate data  
 

2.1 Seasonal forecasts 

2.1.1 Climate forecasts  

Within Clim2Power we use climate forecasts to predict anomalies in meteorological variables for the 
upcoming months.  

To do so, the German Climate Forecast System (GCFS2.0) is run, it is based on the Earth system 
model of the Max Planck Institute for Meteorology (MPI-ESM-HR, Müller et al. (2018)). The model 
has different components (see Fig. 1). The atmosphere is coupled with land, ocean and sea-ice. This 
configuration results in a spatial resolution of ~100 km. 

  

Figure 2: Earth system model MPI-ESM.  The atmosphere (ECHAM6) is coupled to the ocean (MPIOM) and sea ice. Land-
vegetation is represented by JSBACH, bio-geochemical processes by HAMOCC (Source: MPI-M).  

Climate forecasts are being initialized with the observed state of the Earth system, which is realized 
by performing a so-called assimilation run. Beside this, an ensemble of possible initial conditions is 
generated: In the atmosphere, a parameter in the uppermost atmospheric layer responsible for the 
air diffusion is disturbed to create different solutions. In the ocean, so-called bred vectors lead to the 
growth of the most unstable mode of the temperature and salinity fields over the whole ocean 
depth, which are then applied as disturbances to the assimilated climate conditions. For details of 
GCFS2.0, also see: 

https://www.dwd.de/DE/leistungen/jahreszeitenvorhersage/jahreszeitenvorhersage_start.html 

2.1.2 Clim2Power downscaling approaches 

Within Clim2Power, two different methods are used to generate seasonal forecasts on a high-
resolution grid. Spatially highly resolved data is incessant for the hydrological modelling of river 
basins. A flow chart of the downscaling procedures can be seen in Fig. 3. As a first step, a pure 
remapping to the COSMO-REA6 grid (~ 6km) took place for the whole of Europe.  For precipitation, 
we chose an area conserving interpolation method, all other variables were bilinearly interpolated to 
the target grid. For all temperature related variables, a height correction was applied in addition.   

Beside this, a statistical downscaling method (EPISODES, Kreienkamp et al. (2018)) was applied for 
the case study regions in Germany-Austria (Danube) and Portugal (Duoro). A local reference data set 
(here: COSMO-REA6 European reanalysis) is used to retrieve the high-resolution information.  
EPISODES takes the large-scale circulation of the forecast and searches for analogue days in an 
historical archive. Based on those data points, a linear regression between predictor and predictand 
is performed. To translate the results to the highly resolved grid, a weather generator is applied.  
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The resulting data of both methods is converted to a CMOR (Climate Model Output Rewriter) data 
structure and transferred to DWD’s ESGF node.  

 

Figure 3: Downscaling of the seasonal forecasts in the Clim2Power project.  For the European case study we use a simple 
remapping procedure, for the case studies in Austria and Portugal, a statistical downscaling method (EPISODES) is 
applied. All output is converted to a common data structure (CMOR) and delivered via ESGF. 

 

2.1.3 Evaluating skill of the forecasts 

An approach to measure how well a model performs is to run it for the past and compare the results 
to observations (or reanalyses). GCFS2.0 was run in this so-called hindcast mode from 1990-2017 for 
every start month. In Clim2Power, we analyse start months February, May, August and November, 
corresponding to the four seasons of a year. For the evaluation of the forecasts, we use the COSMO-
REA6 regional reanalysis, which is available from 1995-2018 (Bollmeyer et al. 2015). 

Seasonal forecasts should always be considered as deviations from a climatological mean state.  
According to this, we analyse the correlations of the anomalies the model predicted versus the 
observed anomalies. As a measure for that, we use the Anomaly Correlation Coefficient (ACC). Fig. 4 
shows as an example ACC values for the remapping data set over Europe and the statistically 
downscaled seasonal forecasts over Portugal and the German-Austrian region of the variable 
temperature at surface. ACC depends on start month and region as well as on lead time and 
variable. In the specific case shown (Fig. 4, middle panel), GCFS2.0 forecasts for late spring 
temperature performed well in central Europe but poorly over western Europe. This is highlighted as 
well in the downscaled forecasts (Fig. 4, left and right). While the skill does not change, the 
structures are better resolved, as seen for Germany (Fig.3 right).   
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Figure 4: For evaluation of the model, seasonal forecasts were run for the past (“hindcasts”). The displayed Anomaly 
Correlation Coefficient (ACC) states, how well the forecasts performed compared to observations (here: COSMO-REA6 
reanalysis). Shown are the hindcasts of start month February with month 3-5 analysed. The left and the right panel show 
the results of the statistical downscaling for Portugal (left) and Germany-Austria (right). The panel in the middle shows 
ACC for the remapped data instead. 

 

2.2 Climate projections 

In terms of climate projections data, sixteen combinations of global and regional climate models 
(respectively GCM and RCM) were explored using simulations made available by the World Climate 
Research Programme’s CORDEX initiative (www.euro-cordex.net). Further information on EURO-
CORDEX can be found in. e.g. (Giorgi et al., 2009; Jacob et al., 2014). The spatial scale of the 
simulations available is 0.11° (around 12.5 km) and 0.44° (around 50 km). Nevertheless, the latter 
was disregarded taking into account the recognised added value of the higher-resolution dataset 
(EUR-11) regarding the local-scale climate features of the studied areas. Out of the whole GCM–RCM 
combinations, some were not available for all the selected variables and scenarios. For selecting the 
RCMs to be studied, the full set of RCMs was analysed over the Europe domain, in such a way that 
models with a lower degree of satisfaction simulating the climate of our study regions could be 
excluded (Carvalho et al., 2019). From the models that perform adequately, a subset of 11 was 
identified such that each RCM is as “independent” as possible from the other RCMs as in Table 1. 

Table 1 – List of climate models generating the climate projections and scenarios used 

Regional Climate Model 
Driving GCM (Global Climate 

Model) 
Short name Short code 

CLMcom-CCLM4-8-17 CNRM-CERFACS-CNRM-CM5 CLM_CNRM-CM5 A45. A85 

CLMcom-CCLM4-8-17 ICHEC-EC-EARTH CLM_EC-EARTH B45. B85 

SMHI-RCA4 ICHEC-EC-EARTH  SMHI_EC-EARTH C45. C85 

DMI-HIRHAM5 ICHEC-EC-EARTH DMI_EC-EARTH D45. D85 

 KNMI-RACMO22E ICHEC-EC-EARTH KNMI_EC-EARTH E45. E85 

IPSL-INERIS-WRF331F IPSL-IPSL-CM5A-MR IPSL_CM5A-MR F45. F85 

SMHI-RCA4 IPSL-IPSL-CM5A-MR SMHI_CM5A-MR G45. G85 

KNMI-RACMO22E MOHC-HadGEM2-ES KNMI_HadGEM2-ES H45. H85 

SMHI-RCA4 MOHC-HadGEM2-ES SMHI_HadGEM2-ES I45. I85 

MPI-CSC-REMO2009 MPI-M-MPI-ESM-LR MPI_MPI-ESM-LR J45. J85 

DMI-HIRHAM5 NCC-NorESM1-M DMI_NorESM1-M L45. L85 
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Moreover, each of these combinations corresponds in fact to two climate RCP scenarios, namely 
RCP4.5 and RCP8.5, hereafter mentioned as a combination of the individual letter for each model 
combination and 45 or 85. While the combinations agree on the overall mean climatology. 
differences can be pronounced over local regions, and different variables can respond differently 
(see Figure 5 for precipitation anomalies over Europe for all 11 climate models combinations 
available in EURO-CORDEX). Although averaging across different climate models is quite common, 
this is difficult to interpret and might lead to misleading and physically meaningless results. In 
particular, averaging models may cause effects of smoothing the spatially heterogeneous patterns of 
climate variability across Europe, as well as their temporal variability. 

 

  

Figure 5 - Annual mean precipitation (mm) for the historical period (1976-2005) (upper figure) and anomalies (%) for the 
near future (2016-2045) based on 11 selected GCM–RCM combinations under RCP4.5 (bottom left figure) and 8.5 
(bottom right figure). 
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Figure 6 - Annual mean temperatures (ºC) for the historical period (1976-2005) (upper figure) and anomalies (%) for the 
near future (2016-2045) based on 11 selected GCM–RCM combinations under RCP4.5 (bottom left figure) and 8.5 
(bottom right figure). The climate projections considered in this paper are signalled with a star symbol. 

 

One of the key aspects considered in this dataset preparation was the model time horizons (near 
future and mid-century), as well as spatial dimensions. A forecast can be assessed regarding the 
future projections (e.g. hotter or colder than average season in the future) and looking at how that 
relates to the conditions in the past. The choice of spatial resolution may depend on the issue and 
variables being addressed. For example, too little resolution can fail to capture the small-scale 
variability of orographic precipitation, whereas too much resolution can cause the model to become 
computationally impracticable. A spatial scale of 0.11° (around 12.5 km) was expected to adequately 
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fit the requirements of this research. However, at this stage the 0.11° scale was found too large for 
eTIMES-EU. The uncertainty associated with spatial scale should though be kept in perspective given 
other uncertainties affecting climate projections.   

It is important to mention that climate projections are not an estimation of the year-to-year or 
season-to-season climate variables. Instead, they are estimations of the average conditions over 
decades. The 11 GCM-RCM combinations (i.e. 22 climate projections) considered are identified in 
Figure 5 and Figure 6 regarding precipitation and temperature anomalies for the near-future when 
compared with the historic time-series of 1976-2005. It becomes clear that they represent different 
possible future trends regarding climate evolution, from having a drier Portugal with less 50% 
precipitation (e.g. F45 scenario), or  no change from the past (e.g. J45) or even an increase up to 20% 
of precipitation in the north of the country (e.g. H45). Indeed, despite the updated and detailed 
information on climate projections estimated from GCMs/RCMs, considerable uncertainties are 
involved, either resulting from the unknown future evolution of GHG concentrations and other 
forcing agents of the climate system, as well as climate model simplifications of the chaotic 
behaviour of the climate system (Knutti and Sedláček, 2013; Prein and Gobiet, 2017; Stocker et al., 
2013). 
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3 Translating climate data into capacity factors  
 

3.1 Solar and wind capacity factors 

For the calculation of solar PV capacity factors (or CF) the model 𝑓𝑃𝑉  developed in ECEM project 
(Saint-Drenan et al., 2018) was used. In this approach, the cumulated PV power generation of every 
plant included in a raster cell is evaluated as a function of the known meteorological parameters by 
means of a physical approach. The total PV power generated in an area is estimated as the weighted 
sum of the values of the PV power generation obtained for different parameter sets Ai: 

𝑃𝑃𝑉(𝑥. 𝑡) = ∑ 𝑤𝑖 𝑓𝑃𝑉(𝑥. 𝑡. GHI (𝑥. 𝑡). Tamb(𝑥. 𝑡). 𝐴𝑖)

𝑛

𝑖=1

 (1) 

Where 

Ppv(x.t)  is an estimate of the power produced at time t by all PV plants located at x [W/Wp] 

GHI (x.t) is the global horizontal irradiance at time t and location x [W/m2] 

Tamb(x.t) is the air temperature at time t and location x [°C] 

fPV(…) is a function representing the PV model used to calculate the normalized PV power 
[W/Wp] 

Ai  represents the set of plant parameters needed by the PV model  

wi  is the probability of occurrence of a parameter set Ai 

 

In Eq. 1, the parameter set Ai represents the input parameters of a model fPV accounting for the 
characteristics of a PV plant (e.g. module orientation angles. temperature coefficient). A single PV 
power calculation is thus conducted for each configuration. The total PV power is then obtained by a 
weighted sum of the power value evaluated for each configuration. the weights being the share of 
plants with a configuration set Ai in the total capacity.  

As detailed in (Saint-Drenan et al., 2018), the PV system model is chosen to best compromise 
between a limited number of unknown and a good accuracy. To this end, state of the art models 
have been selected in the literature and the less important parameters set to representative values. 
The parameters Ai has been selected using a parameterisation depending on the geographically 
varying optimal tilt angle. 

For wind CF (onshore and offshore), a similar approach to that adopted in the NINJA (Pfenninger and 
Staffell, 2016), EMHIRES (Gonzalez Aparicio et al., 2016) and ECEM projects has been used. The 
power production of each turbine installed in Europa has been calculated based on information 
provided by thewinpower.net database and model wind speed. The wind curve has been generated 
using the approach described in (Saint-Drenan et al., 2019). Finally, attention has been paid in 
choosing a model setup allowing a fast calculation. This has been achieved by using a LUT approach. 
More information on this approach can be found in (Saint-Drenan, 2019). 
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These wind and solar PV capacity factors are then aggregated per NUT2 regions of Europe (circa 263) 
and, for the case of wind offshore, 96 maritime regions (obtained by intersecting the International 
Hydrographic Organization sea limits and Exclusive Economic Zones areas) as in Figure 7. The 
consideration of maritime region for the spatial aggregation of RES time series has been made to 
include offshore wind energy. The definition of these areas has been jointly developed in the C2P 
and C3S energy projects.  

 

Figure 7 – Spatial disaggregation of the wind and PV capacity factors at NUT2 regions 

 

3.2 Hydropower capacity factors  

To translate climate data into potential hydropower production at the country level, machine 
learning (ML) techniques were used. The workflow of ML procedure is given in Figure 8. 

 

Figure 8: Machine learning workflow 
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The procedure starts by training a so-called (supervised) learner with a set of data including the 
observed outcome and feature measurements. This leads to building a prediction model, which 
enables predicting the unobserved outcome based on a different set of input features. A good 
learner is one that accurately predicts this outcome. In the statistical literature, the features are 
often called the predictors or the inputs, whereas the outcomes are called the responses or the 
outputs.  

In the case of the present project, the main input features are the daily time series of air 
temperature and precipitation aggregated at NUTS2 level. We build two different models: one to be 
used for the prediction of the daily national run-of-river hydropower (HRoR) CF and one dedicated to 
the prediction of the reservoir-based hydropower (HRes) CF. 

For the training and validation phases of the ML models, observed climate and energy data are 
required. In particular, 

• climate data include the daily time series of precipitation and air temperature remapped to 
the 6 km COSMO-REA grid. Reanalysis climate data covering the period 1995-2019 are 
provided by one of the Clim2Power partners, Deutscher Wetterdienst (DWD) (DWD, 2019). 
Moreover, in order to take into account the temporal delay between the meteorological 
event and the corresponding hydropower production, suitable temporal shifts applied to the 
time series of precipitation and air temperature were also considered; 

• historical data of hydropower production aggregated at a country level are from the ENTSO-
E Transparency Platform (ENTSO-E, 2019), where energy generation data are systematically 
collected at hourly time resolution starting from 1 January 2015 to the current days.  

Moreover, for building the model of the HRoR, we also include the daily national load. This choice is 
due to the fact that many HRoR plants are located downstream of Res plants, which largely affect 
the river flow and, consequently, the generation in the HRoR plants. Instead, for building the model 
of the HRes, we include the daily time-series of the national Residual Load Curve (RLC) which is 
computed by subtracting from the demand, the values of hydro, PV, and wind power. This choice is 
related to the fact that HRes plants are activated for meeting peak demand situations, as they are 
more responsive than other generation sources and can be started or stopped within a very short 
time. 

In order to select the ML technique that provides the best performance, five well-established ML 
algorithms were tested: Linear Regressor, Support Vector Machine, Boosted Ensemble of Trees, 
Random Forests (RF) and Artificial Neural Networks (ANN) (Hastie et al., 2009). The first four 
regression methods were implemented in the Statistics and Machine Learning Toolbox 11.4, while 
the ANN was in the Deep Learning Toolbox 12.0 in MATLAB® R2018b.  

In the validation phase, the output model (HRoR CF or HRES CF) was compared with observed data 
and the performance of the five algorithms was measured in terms of correlation coefficient, 
adjusted coefficient of determination, mean absolute and mean square percentage errors. This 
comparison indicated that the models based on Random Forests (RF) exhibit the best performance 
(e.g. correlation coefficient in the validation phase equal to 0.86 for France, 0.90 for Portugal and 
0.95 for Spain).  

Once a model has been trained and validated, it can be used to perform a prediction of the 
response; this is the ‘prediction phase’ in the scheme in Figure 8.  At this aim, we feed our model 
with the seasonal predictions (resp., the long-term projections) of all the required predictors. This 
allows us to obtain the seasonal predictions (resp., the long-term projections) of the hydropower CF. 
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It is important to mention that even if ML does not require numerous diverse inputs for building an 
approximate model between climate variables and hydropower, on the other hand, a large quantity 
of historical observed data would be necessary for opportunely training the learners and improve 
the model accuracy and response to extreme events. Although the historical dataset at our disposal 
is relatively small, our models are able, in general, to reproduce the climate impact on the 
hydroelectricity production, although some extreme events are still difficult to be predicted. 
Nevertheless, we are confident that the validity of our approach still holds, and it will improve with 
the increase of historical data. 

 

3.3 Impact of temperature in demand 

The impact of future temperatures on the demand for electricity was computed at country level and 
for each long-term time-series of climate variables also using machine learning techniques. Hourly 
demands were estimated using a two-stage approach: (i) quantifying structural changes expressed 
as the percentage of demand allocated to each time step and (ii) applying these structural changes 
to exogenously specified future demands in a second stage (Figure 9).  

 

Figure 9 - Structural change model 

 

Figure 9 describes the methodological approach used to estimate climate induced structural changes 
in the load curve of electricity demand for each country. Based on historical temperature time series 
and hourly load values from ENTSO-E, was firstly built an estimator of future daily demands using 
two ML techniques: neural networks and XGBoost (Chen and Guestrin, 2016) using 2015, 2016 and 
2017 data for model training and 2018 data for the test. 

To obtain hourly load curves, was used a load profiling approach to identifying typical load curves for 
each season, weekday and holidays. The K-means algorithm (Jin and Han, 2010) was used as 
classifier to define a set of clusters explaining more than 90% of the variance. Each load profile is 
described by the hourly % of the average daily load. Applying the model to the future times-series 
provided by each climate model, it is possible to compute hourly structural changes per country for 
each consistent climate scenario. Figure 10 shows the results for the countries of FR, PT, SE and DE. 
The approach finds the number of load patterns that captures the way electricity is consumed at 
daily level. In Figure 10 each line is a cluster that describes one representative load profile for the 
considered country. The number of clusters depends on the number of profiles needed to explain 
most of the variance. 
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Figure 10 - Hourly load profile clusters for 4 countries: FR. PT. SE. DE 

 

It should be noted that by using models trained on past data, this approach of structural changes 
assumes that observed temperature dependencies can provide meaningful information for the 
future. This assumption ignores the possible future changes in the role of electricity for heating and 
cooling, which could occur due to higher deployment of electric heat pumps and/or electric vehicles. 
Basically, these hourly load profiles can have a different shape in 2030 and 2050. To somewhat 
reduce the effect of this assumption, structural changes were applied to the projected demand of 
the EU Reference scenario considering the effect of electric vehicle’s electricity demand. The 
structural allocation of the electric vehicle demand is the same across all the scenarios and 
corresponds to the dynamic management of the charging for the “Crescendo” scenario (RTE, 2019). 
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4 Output indicators 

4.1 Seasonal results – DISPA-SET model 

The hourly power demand and capacity factors for solar, wind and hydropower were input into a 
Dispa-SET model developed for the whole of Europe. Dispa-SET is an open-source unit commitment 
and optimal dispatch model suited to study the balancing of European power grids. Dispa-SET is 
mainly developed within the Joint Research Centre of the EU Commission, in close collaboration with 
the University of Liège and the KU Leuven (Belgium). More information on the model can be 
obtained here: http://www.dispaset.eu/en/latest/. 

The model results include dispatched power, the shedded load and the curtailed power generation. 
The binary variables are the commitment status of each unit. The model considers minimum and 
maximum power for each unit; power plant constraints as minimum power, ramping limits, 
Minimum up/down times, start-up, no-load costs; curtailment; pumped-hydro storage and the 
functioning of non-dispatchable units (e.g. wind turbines, solar PV, run-of-river, etc.), among other. 
In Clim2power special attention was paid to integrated mid-term scheduling and short-term optimal 
dispatch considering the available seasonal forecasts. 

Within Clim2power Dispa-SET was calibrated for the whole of Europe and each individual country for 
the year of 2019, using ENTSO-E data. The seasonal analysis results are obtained for each country in 
Europe for each of the seasonal forecasts considered.   

 

4.2 Long-term Results - eTIMES-EU model 

The maximum possible CF and impacts on demand were input into a bottom-up optimisation TIMES 
energy system model (Loulou and Labriet, 2008). A new TIMES model was developed in Clim2power 
for the whole of EU covering only the power sector (eTIMES-EU) which, as for any TIMES family 
models, has intertemporal optimization, and minimizes the total discounted cost. eTIMES-EU has 29 
regions, representing all countries in continental European Union (thus, it excludes Cyprus and 
Malta), plus Norway, Switzerland and Iceland (Table 2). 

Table 2 – Considered countries and country groups in eTIMES-EU 

Country groups Group code Included countries name (and short code) 

Alpine Peninsula ALP Italy (IT) 
British Islands BIS Ireland (IE), United Kingdom (UK) 
Iberian Peninsula IBE Spain (ES, Portugal (PT) 

Central West Europe CWE 
Austria (AT), Belgium (BE), Switzerland (CH), Germany (DE). France 
(FR), Luxembourg (LU), Netherlands (NL) 

Central East Europe CEE Czech Republic (CZ), Poland (PL) 
Nordic & Western 
Nordic 

NWN Denmark (DK), Finland (FI), Norway (NO), Sweden (SE), Iceland (IS) 

Nordic & Eastern Nordic NEE Estonia (EE), Lithuania (LT), Latvia (LV) 

South Eastern Europe SEE 
Bulgaria (BG), Greece (GR), Croatia (HR), Hungary (HU), Romania 
(RO), Slovenia (SI), Slovakia (SK) 
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The model runs in 1- or 5-year time-steps from 2016 to 2060. Each year is disaggregated in 64 time 
slices, outlining the 4 seasons (DJF, MAM, JJA, SON), 2 typical days (weekdays and weekends) and 8-
time sequential day periods (P1 to P8 of 3 hrs each).  

eTIMES-EU is supported by a detailed database, with the following main exogenous inputs: (1) 
electricity demand from the 2016 Energy Reference Scenario (The European Commission, n.d.) and 
summarised in Table 3; (2) characteristics of the existing and future electricity generation 
technologies, such as efficiency. stock. availability. investment costs, operation and maintenance 
costs, and general discount rate of 8%; (3) present and future sources of primary energy supply and 
their potentials; and (4) policy constraints and assumptions. 

 

Table 3- Evolution of considered electricity demand per group of countries (TWh) 

Year/Country 
group 

ALP BIS CEE CWE EU IBE NEE NWN SEE 

2020 304 361 203 1251 2915 294 25 248 229 

2030 314 384 234 1314 3084 304 27 264 242 

2040 359 426 258 1383 3317 320 28 281 262 

2050 395 472 281 1463 3574 342 31 306 283 

Evolution from 
2020 to 2050 (%) 

30% 31% 38% 17% 23% 16% 24% 23% 24% 

 

4.2.1 Electricity generation technologies 

Electricity generation data from (ENTSO-E, 2019) and Eurostat (EUROSTAT, 2018) was used to derive 
country-specific power balances, which determine the characterisation of power generation 
technology profiles in the base year. Beyond the base year, possible new electricity generation 
technologies are compiled in an extensive database with detailed technical and economic features 
based on (OCDE/IEA, 2016) summarised in Annex 2. CO2 storage capacity and transport is possible as 
illustrated by different projects (Global CCS Institute, 2019). The model uses country-specific hydro, 
wind and solar annual availability profiles (introduced as maximum possible CF) for replicating the 
year of 2016 as in ENTSO-E Transparency Portal (ENTSO-E, 2019) for the 64 modelled time-slices. 
Concerning electricity grids, eTIMES-EU considers both import/export processes regarding the 
existing infrastructures (capacity and flows) and possible new investments based on the TYNDP2016 
(ENTSO-E, 2016). These investments are considered only within the 29 modelled countries. There 
are three levels of electricity voltage and conversion between levels. The electricity trade outside the 
modelled region is not considered. The internal and external trade maximum capacity hypothesis are 
key assumptions with potential high impact on the results.  
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4.2.2 Primary energy potentials and import costs 

The model considers current and future sources of primary energy (potentials and costs) and their 
constraints for each country. The reference fossil primary energy import prices into EU as in 
(European Commission, 2011) were used (Table 4). 

Table 4 - Primary energy import prices into EU considered in eTIMES-EU in EUR2010/PJ 

Fuel 2020 2030 2040 2050 

Oil 16.33 17.49 19.08 20.52 

Gas 8.77 9.06 9.5 9.9 

Coal 2.93 3.04 3.09 3.17 

 

A number of assumptions and sources are adopted to derive the RES potentials in the modelled 
countries for wind, solar, geothermal, marine and hydro, as detailed in Table 5. More details can be 
obtained in (Simoes et al., 2013) and Annex 1. At this stage, import of biofuels are not considered 
due to lack of reliable data. The use of biofuels in the base year is calibrated with (Bioenergy Europe, 
2019). For the rest of the period, biofuels consumption can grow up to 120% more than used in the 
base year. 

 

Table 5 - Overview of the technical RES potential considered in eTIMES-EU 

RES Methods Main data sources 

Assumed maximum 
possible technical potential 

capacity / activity for 
Europe+ 

Wind onshore 
Maximum activity and capacity 

restrictions per country 
JRC-EU-TIMES model 
(Simoes et al., 2013) 

282 GW in 2020 and 302 
GW in 2050 

Wind offshore 
Maximum activity and capacity 

restrictions per country 
(Giles Hundleby et al., 

2017) 
60 GW in 2020 and 271 GW 

in 2050 

PV and 
Concentrated 
Solar Power 

Maximum activity and capacity 
restrictions disaggregated for different 

types of PV and for CSP per country 

JRC-EU-TIMES model 
(Simoes et al., 2013) 

620 GW in 2020 and 1 316 
GW in 2050 for PV & CSP 

Geothermal 
electricity 

Maximum capacity restriction in GW. 
aggregated for both EGS and 

hydrothermal with flash power plants 

JRC-EU-TIMES model 
(Simoes et al., 2013) 

71 GW in 2020 and 124 GW 
in 2050 

Ocean 
Maximum capacity restriction in GW. 
aggregated for thermal. hydrokinetic. 

tidal and wave 

JRC-EU-TIMES model 
(Simoes et al., 2013) + own 

assumptions 
691 GW in 2020 and 2050 

Hydro 
Maximum capacity restriction in GW. 
further disaggregated for run-of-river 

and dam plants 

JRC-EU-TIMES model 
(Simoes et al., 2013) 

137 GW in 2020 and 
onwards for run-of-river 

and lake. 98 GW for dams 

 

4.2.3 Policy assumptions and scenarios 

As previously mentioned, 22 climate projections from 2016 till 2050 are modelled. Besides these, it 
is also modelled a “BASE” scenario and a NEUTR scenario. The BASE scenario is mainly used as a 
reference case and considers “historic” CF for wind, PV and hydropower, as well as observed load 
curves for electricity demand. The “historic” CF are the ones for 2016 from (ENTSO-E, 2019), that are 
maintained till 2050. The NEUTR scenario is identical to BASE, but it includes an ambitious 2050 CO2 
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emissions mitigation cap of no emissions from the power sector modelled as a linear trajectory from 
2016 emission values. The purpose of this scenario is to test the effect of changing the “historic” CF 
and demand structure in a highly-RES European power system. The other scenarios are identical to 
NEUTR, but have CF and modified intra-annual electricity demand structure according to the six 
considered climate projections. 

All of the modelled scenarios have in common the following assumptions:  

i) No consideration of the specific policy incentives to RES (e.g. feed-in tariffs, green 

certificates) since the objective is to assess deployment based solely on cost-effectiveness.  

ii) Countries currently without NPP will not have these in the future (AT. PT, GR, IT, DK, HR, NO 

and IS). NPPs lifetime expansion is authorized till 2040. Until 2025, the model has the choice 

between investing in a new capacity or extending the life of an existing plant. NPPs in DE are 

not operating after 2025. 

iii) Coal plants in BE are not operating from 2017 onwards.  

iv) No new coal plants to be built in AT, BE, CH, DK, FI, IE, IT, PT, UK, LT, LV, EE, LU and IS. 

Based on the approach described in the previous section, the eTIMES-EU inputs on maximum 
possible capacity factors for wind (onshore and offshore). 

 

4.3 Output indicators in the Clim2power webservice 

 

Category Indicator name Definition1 
CO2 emission gCO2/kWh (CO2 emissions per 

generated electricity)  
Mass of CO2 emissions in each country 

The CO2 emission intensity (g CO2/kWh) is 
calculated as the ratio of CO2 emissions from 
electricity production (as a share of CO2 
emissions from public electricity and heat 
production related to electricity production), 
and gross electricity production. 

Renewable energy 
sources (RES) 
generation 

% of electricity generated from RES Renewable energy sources considered include 
wind power, solar power, hydro power, and 
other RES (bioenergy, geothermal and biomass 
with carbon capture and storage).  

Electricity generation % of electricity generated from 
hydropower 
% of electricity generated from solar 
% of electricity generated from wind 
Total of electricity generated from 
hydropower (TWh) 
Total of electricity generated from solar 
(TWh) 
Total of electricity generated from wind 
(TWh) 
Total generated electricity 

- 

 
1 Sources : European Commission and European Environment Agency  
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6.1 ANNEX 1 – Considered technical and economic assumptions for the power production technologies 

Fuel Technology 

Specific investments costs 
(overnight) (eur2010/kW) 

Fixed operating and maintenance costs 
(eur2010/kW) 

Electric net efficiency (condensing mode) 
(%) 

Tech. 
life (yr.) 

Maximum 
Capacity factor 

(%) 

CO2 capture 
rate (%) 

2017 2020 2030 2040 2050 2017 2020 2030 2040 2050 2017 2020 2030 2040 2050   2030 2050 

Coal 

Hard coal / lignite 600 MWel                    

Supercritical 1700 1506 1506 1506 1506 30 30 30 30 30 40 44 44 44 46 30 80   

Supercritical+ (post 
comb./oxyfuelling) capture 

5500 4872 4430 4252 4252 35 35 35 35 35 32 38 38 38 42 30 80 89 90 

FB 2457 2098 2005 1973 1940 30 30 30 30 30 40 42 42 42 44 30 80   

FB + capture 7994 6728 5761 5422 5313 35 35 35 35 35 32 37 37 37 40 30 80 89 90 

IGCC 2407 2133 2005 1962 1962 33 33 33 33 33 40 45 45 45 50 35 80   

IGCC pre-comb capture 5633 4990 4479 4223 4223 39 39 39 39 39 32 39 39 39 45 35 80 89 90 

CHP BackPressure 3107 2753 2753 2753 2753 55 55 55 55 55 Country specific values 35 Country specific   

Natural Gas 

Combined Cycle Small  1104 978 978 978 978 20 20 20 20 20 60 60 63 63 63 35 85   

Combined Cycle Large 1000 886 886 886 886 18 18 18 18 18 60 60 63 63 63 35 85   

Combined-cycle+post comb. 
capture 

2985 2645 2389 2261 2261 53 53 53 53 53 54 56 57 57 57 35 85 89 90 

Peak Turbine 220 220 220 220 220 12 12 12 12 12 34 34 34 34 34 30 85   
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Fuel Technology 

Specific investments costs 
(overnight) (eur2010/kW) 

Fixed operating and maintenance costs 
(eur2010/kW) 

Electric net efficiency (condensing mode) 
(%) 

Tech. 
life (yr.) 

Maximum 
Capacity factor 

(%) 

CO2 capture 
rate (%) 

2017 2020 2030 2040 2050 2017 2020 2030 2040 2050 2017 2020 2030 2040 2050   2030 2050 

CHP Int Comb Small 2500 2500 2500 2500 2500 65 65 65 65 65 Country specific value 15 

Country specific 
value 

  

CHP Int Comb Medium 1050 1050 1050 1050 1050 45 45 45 45 45      15   

CHP Int Comb Large 750 750 750 750 750 35 35 35 35 35      18   

CHP Combined-cycle Small 1521 1347 1347 1347 1347 30 30 30 30 30      35   

CHP Combined-cycle Large 1300 1152 1152 1152 1152 25 25 25 25 25      35   

Nuclear 
1000 MWel 

3rd generation 6563 5315 5315 5315 5315 39 39 38 38 38 36 36 36 36 36 60 85   

4th generation    7773 6500    28 28    38 38 60 85   

Wind 
onshore 

Wind onshore 1 low/2 
medium (IEC class III/II) 

1620 1388 1342 1310 1295 40 40 40 40 40 100 100 100 100 100 20 23   

Wind 
offshore 

Wind offshore 1 low/medium 
(IEC class II) 

4050 3003 2496 2262 2235 60 60 60 60 60 100 100 100 100 100 20 40   

Hydro 

Reservoir 2650 2348 2348 2348 2320 45 45 45 45 45 93 93 93 93 93 80 60   

Run of river small 4429 3924 3924 3924 3878 45 45 45 45 45 93 93 93 93 93 60 60   

Run of river medium 4164 3689 3689 3689 3646 45 45 45 45 45 93 93 93 93 93 70 60   

Run of river large 2650 2348 2348 2348 2320 45 45 45 45 45 93 93 93 93 93 80 60   
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Fuel Technology 

Specific investments costs 
(overnight) (eur2010/kW) 

Fixed operating and maintenance costs 
(eur2010/kW) 

Electric net efficiency (condensing mode) 
(%) 

Tech. 
life (yr.) 

Maximum 
Capacity factor 

(%) 

CO2 capture 
rate (%) 

2017 2020 2030 2040 2050 2017 2020 2030 2040 2050 2017 2020 2030 2040 2050   2030 2050 

Solar 

Solar PV utility scale fixed 
systems > 10MW 

1800 1329 709 586 532 29 29 29 19 19 100 100 100 100 100 25 25   

Solar PV roof <0.1 MWp / 
0.1-10 MWp 

2182 1636 890 736 728 40 40 40 40 40 100 100 100 100 100 25 25   

Solar CSP 50 MWel 8000 6341 5284 4663 4608 45 45 41 38 38 100 100 100 100 100 25 25   

Biomass 

Steam turbine biomass solid 
conventional 

2400 2082 2038 1993 1970 64 64 64 64 64 35 35 35 35 36 35 80   

Steam turbine biomass solid 
conventional HT 

2400 2082 2038 1993 1970 45 45 45 45 45 38 39 39 39 39 25 80   

IGCC Biomass 100 MWel   3900 3700 3500 54 54 54 54 54   44 44 49 25 80   

IGCC Biomass 100 MWel + 
capture 

  3900 3700 3500 63 63 63 63 63   38 38 44 25 80 89 90 

CHP IGCC  4680 4146 4146 4146 4146 143 143 124 90 90   37 37 37 25 

Country specific 

  

CHP Steam Turb condensing 3750 3278 3233 3145 3108 72 72 72 72 72   31 31 31 25   

Geothermal Hot Dry Rock geotthermal 4900 4341 3960 3561 3189 194 194 175 136 136 20 20 21 22 22 20 85   

Ocean 

Wave 5 MWel 6950 5891 4119 3056 3021 160 160 160 160 160 100 100 100 100 100 25 40   

Tidal energy stream and 5414 4589 3209 2381 2533 92 92 92 92 92 100 100 100 100 100 80 25   
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Fuel Technology 

Specific investments costs 
(overnight) (eur2010/kW) 

Fixed operating and maintenance costs 
(eur2010/kW) 

Electric net efficiency (condensing mode) 
(%) 

Tech. 
life (yr.) 

Maximum 
Capacity factor 

(%) 

CO2 capture 
rate (%) 

2017 2020 2030 2040 2050 2017 2020 2030 2040 2050 2017 2020 2030 2040 2050   2030 2050 

range 10 MWel 

Thermal 
3000

0 
3000

0 
1300

0 
1300

0 
1300

0 
120 120 120 120 120 100 100 100 100 100 25 91   

Hydrokinectic 7894 6692 4679 3472 3431 120 120 120 120 120 100 100 100 100 100 25 40   

Biogas 

CHP Internal Combustion 
Small 

4000 4000 4000 4000 4000 115 115 115 115 115 34 34 34 34 34 15 

Country specific 

  

CHP Internal Combustion 
Large 

2350 2350 2350 2350 2350 115 115 115 115 115 39 39 39 39 39 15   

Oil 

CHP Internal Combustion 
Small 

2210 1958 1958 1958 1958 65 65 65 65 65 30 30 30 30 30 18 

Country specific 

  

CHP Internal Combustion 
Medium 

2730 2419 2419 2419 2419 45 45 45 45 45 30 30 30 30 36 15   

CHP Internal Combustion 
Large 

750 750 750 750 750 35 35 35 35 35 30 30 30 30 42 18   

Supercritical HFO 1916 1671 1636 1617 1604 21 21 21 21 21 40 44 44 44 46 35 85   

Supercritical HFO + capture 1413 1342 1264 1264 1215 24 24 24 24 24 32 38 38 38 42 35 80 89 90 

Turb Diesel 910 806 806 806 806 18 18 18 18 18 34 34 34 34 34 35 85   

Waste Steam 7000 6072 5943 5814 5746 33 33 33 33 33 14 14 14 20 25 20 68   
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Fuel Technology 

Specific investments costs 
(overnight) (eur2010/kW) 

Fixed operating and maintenance costs 
(eur2010/kW) 

Electric net efficiency (condensing mode) 
(%) 

Tech. 
life (yr.) 

Maximum 
Capacity factor 

(%) 

CO2 capture 
rate (%) 

2017 2020 2030 2040 2050 2017 2020 2030 2040 2050 2017 2020 2030 2040 2050   2030 2050 

CHP Steam Turb Condensing 7450 6511 6423 6290 6216 74 74 74 74 74 14 14 14 25 25 20 Country specific   
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6.2 ANNEX 2 - Maximum potential installed capacity for RES electricity 
power plants per country considered in eTIMES-EU (GW) 

 

Country
/Year 

Hydropowera PVb Wind onshoreb Wind offshoreb Oceana 

2020 2030 2050 2020 2030 2050 2030 2050 2050 2020 2030 2050 2020 2030 2050 

AT 8.9 10.0 13.3 73 73 73 11 11 11 0 0 0 0 0 0 

BE 0.1 0.1 0.1 52 52 52 8 8 8 2 2 2 0.54 0.54 0.54 

BG 2.3 3.0 6.4 149 149 149 53 53 53 0 0 0 0 0 0 

CH 13.6 14.3 16.3 20 20 20 1.1 1.1 1.1 0 0 0 0 0 0 

CZ 1.1 1.2 1.4 112 112 112 76 76 76 0 0 0 0 0 0 

DE 4.5 4.5 4.7 494 494 494 107 107 107 28 28 28 0 0 0 

DK 0.0 0.0 0.0 76 76 76 55 55 55 27 27 27 9.29 9.29 9.29 

EE 0.0 0.0 0.0 28 28 28 27 27 27 1 1 1 0 0 0 

ES 17.0 20.8 34.2 658 658 658 704 704 704 1 1 1 47.63 47.63 47.63 

FI 3.2 3.5 4.1 36 36 36 31 31 31 21 21 21 5.54 5.54 5.54 

FR 18.5 20.9 28.1 822 822 822 813 813 813 16 16 16 55.88 55.88 55.88 

GR 2.7 3.9 10.0 157 157 157 168 168 168 0 0 0 14.44 14.44 14.44 

HR 1.8 1.9 2.2 50 50 50 24 24 24 5 5 5 4.81 4.81 4.81 

HU 0.1 0.1 0.1 161 161 161 53 53 53 0 0 0 0 0 0 

IE 0.2 0.3 0.4 113 113 113 147 147 147 1 1 1 66.6 66.6 66.6 

IS 2.0 2.7 6.2 1 1 1 0.303 0.303 0.303 0 0 0 0 0 0 

IT 14.3 15.4 18.3 443 443 443 178 178 178 5 5 5 11.59 11.59 11.59 

LT 0.1 0.1 0.2 93 93 93 128 128 128 3 3 3 0.07 0.07 0.07 

LU 0.0 0.0 0.1 3 3 3 1 1 1 0 0 0 0 0 0 

LV 1.6 1.6 1.8 48 48 48 79 79 79 15 15 15 0 0 0 

NL 0.0 0.0 0.0 42 42 42 49 49 49 48 48 48 3.71 3.71 3.71 

NO 30.4 34.1 45.4 12 12 12 14.31 14.31 14.31 7.3 7.3 7.3 79.2 79.2 79.2 

PL 0.6 1.0 3.8 447 447 447 102 102 102 12 12 12 23.4 23.4 23.4 

PT 4.7 6.2 12.4 92 92 92 39 39 39 3.38 3.38 3.38 46.8 46.8 46.8 
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Country
/Year 

Hydropowera PVb Wind onshoreb Wind offshoreb Oceana 

2020 2030 2050 2020 2030 2050 2030 2050 2050 2020 2030 2050 2020 2030 2050 

RO 6.6 8.6 16.3 381 381 381 169 169 169 9 9 9 0.18 0.18 0.18 

SE 16.4 19.9 32.5 71 71 71 134 134 134 31 31 31 10.8 10.8 10.8 

SI 1.3 1.4 1.9 18 18 18 2 2 2 0 0 0 0 0 0 

SK 1.6 1.8 2.5 60 60 60 29 29 29 0 0 0 0 0 0 

UK 1.9 1.9 2.0 347 347 347 230 230 230 104 104 104 309.6 309.6 309.6 

a Based on (Simoes et al., 2013); b Based on (Giles Hundleby et al., 2017) 

b Based on (Ruiz et al., 2019) 

 


